Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros










Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38643455

RESUMEN

Estrone (E1) constitutes the primary component in oral conjugated equine estrogens (CEEs) and serves as the principal estrogen precursor in the female circulation in the post-menopause. E1 induces endothelium-dependent vasodilation and activate PI3K/NO/cGMP signaling. To assess whether E1 mitigates vascular dysfunction associated with postmenopause and explore the underlying mechanisms, we examined the vascular effects of E1 in ovariectomized (OVX) rats, a postmenopausal experimental model. Blood pressure was measured using tail-cuff plethysmography, and aortic rings were isolated to assess responses to phenylephrine, acetylcholine (ACh), and sodium nitroprusside. Responses to ACh in rings pre-incubated with superoxide dismutase (SOD), catalase (CAT), or apocynin were also evaluated. Protein expression of SOD, CAT, NOX1, NOX2, and NOX4 was determined by Western blotting. E1 treatment resulted in decreased body weight and retroperitoneal fat, increased uterine weight, and prevented elevated blood pressure in the OVX group. Furthermore, E1 improved endothelium-dependent ACh vasodilation, activated compensatory antioxidant mechanisms - i.e. increased SOD and CAT antioxidant enzymes activity, and decreased NOX4 expression. This, in turn, helped prevent oxidative stress and endothelial dysfunction in OVX rats. Additionally, E1 treatment reversed the increased total LDL cholesterol observed in the OVX group. The findings underscore protective effects of E1 on the cardiovascular system, counteracting OVX-related oxidative stress and endothelial dysfunction in Wistar rats. E1 exhibits promising therapeutic benefits for managing cardiovascular health, particularly in postmenopausal conditions.

2.
Chem Biol Interact ; 395: 111026, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38679115

RESUMEN

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.

3.
Artículo en Inglés | MEDLINE | ID: mdl-38498600

RESUMEN

Angiotensin (Ang)-(1-7) is a cardioprotective peptide of the renin-angiotensin system. Pre-puberty has been considered as a later susceptible window of development and stressful factors in this life phase can induce chronic diseases in adulthood. We aimed to investigate whether the treatment with Ang-(1-7) during the pre-puberty could attenuate the development of hypertension and cardiac injury in adult spontaneously hypertensive rats (SHR). SHR were treated with Ang-(1-7) (24 µg/Kg/h) from 4 to 7 weeks of age. Systolic blood pressure (SBP) was measured by tail-cuff plethysmography up to 17th of age. Thereafter, echocardiography was performed and the rats were euthanized for aorta reactivity assay and tissues and blood collections. Ang- (1-7) did not change the SBP and aortic reactivity but reduced the septal and posterior wall thickness, cardiomyocyte hypertrophy and fibrosis in SHR. Additionally, Ang-(1-7) reduced the gene expression of ANP and BNP, increased the metalloproteinase 9 expression, and reduced the ERK 1/2 phosphorylation. Ang-(1-7) also prevented the reduction of Mas receptor but did not change the protein expression of ACE2, ACE, AT1, and AT2. The treatment with Ang-(1-7) decreased the MDA levels and increased SOD-1 and catalase activity and protein expression of catalase. Our findings demonstrate that the treatment of SHR with Ang-(1-7) for three weeks early in life promotes beneficial effects in the heart later in life, even without altering blood pressure, through mechanisms involving the reduction of oxidative stress and ERK1/2 phosphorylation. Additionally, this study supports the pre-puberty as an important programming window.

4.
J Pharm Pharmacol ; 76(4): 368-380, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38330395

RESUMEN

OBJECTIVES: To evaluate whether the glycosylation of chrysin (CHR) enhances its protective effects against aluminum-induced neurotoxicity. METHODS: To compare the antioxidant, anticholinesterase, and behavioral effects of CHR with its glycosylated form (CHR bonded to ß-d-glucose tetraacetate, denoted as LQFM280), we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (aluminum-induced neurotoxicity in Swiss mice) models. KEY FINDINGS: LQFM280 demonstrated higher antioxidant activity than CHR in both models. Specifically, LQFM280 exhibited the ability to exert antioxidant effects in the cytoplasm of SH-SY5Y cells, indicating its competence in traversing neuronal membranes. Remarkably, LQFM280 proved more effective than CHR in recovering memory loss and counteracting neuronal death in the aluminum chloride mice model, suggesting its increased bioavailability at the brain level. CONCLUSIONS: The glycosylation of CHR with ß-d-glucose tetraacetate amplifies its neuroprotective effects, positioning LQFM280 as a promising lead compound for safeguarding against neurodegenerative processes involving oxidative stress.


Asunto(s)
Flavonoides , Neuroblastoma , Fármacos Neuroprotectores , Síndromes de Neurotoxicidad , Ratones , Animales , Humanos , Aluminio/toxicidad , Glucosa/farmacología , Fármacos Neuroprotectores/farmacología , Estrés Oxidativo , Antioxidantes/farmacología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Línea Celular Tumoral
5.
Inflammopharmacology ; 31(5): 2451-2465, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37667090

RESUMEN

In the scope of a research program with the goal of developing treatments for inflammatory diseases, the pharmacological evaluation of LQFM291, designed by molecular hybridization from butylated hydroxytoluene and paracetamol, was described. The antioxidant profile of LQFM291 was evaluated by electrochemical measurement. Also, acute or repeated treatments with equimolar doses to paracetamol were used to evaluate the antinociceptive and/or anti-inflammatory activities of LQFM291 in animal models. The toxicologic potential of LQFM291 was also evaluated and compared to paracetamol through biochemical and histopathological analysis after the repeated treatment schedule. As a result of the acute treatment, paracetamol showed a similar antinociceptive effect in formalin test compared to LQFM291. Whereas, after the repeated treatment, when carrageenan-induced hyperalgesia and edema tests were performed, paracetamol showed a delayed antinociceptive and anti-inflammatory effect compared to LQFM291. Furthermore, as other advantages the LQFM291 showed a high redox capacity, a gastroprotective activity and a safety pharmacological profile without any liver or kidney damage. These effects can be related to the prevention of oxidative stress by reduction of protein and lipid peroxidation in gastric tissue, maintenance of glutathione levels in hepatic homogenate, and a systemic reduction of pro-inflammatory cytokine levels, which may characterize the LQFM291 as a more viable and effective alternative to relief pain and inflammatory signs in patients with chronic disorders.


Asunto(s)
Acetaminofén , Antiinflamatorios , Animales , Humanos , Acetaminofén/efectos adversos , Antiinflamatorios/uso terapéutico , Dolor/tratamiento farmacológico , Carragenina , Extractos Vegetales/farmacología , Analgésicos/efectos adversos , Edema/inducido químicamente , Edema/tratamiento farmacológico
6.
Fitoterapia ; 167: 105488, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36990290

RESUMEN

Previous studies have attributed the prominent analgesic, hallucinogenic, sedative, and anxiolytic properties of Salvia divinorum to Salvinorin A. However, the overall pharmacological profile of this isolate limits its clinical applications. To address these limitations, our study evaluates the C(22)-fused-heteroaromatic analogue of salvinorin A [2-O-salvinorin B benzofuran-2-carboxylate] (P-3l) in mice nociception and anxiety models while assessing possible mechanism of action. In comparison with the control group, orally administered P-3l (1, 3, 10, and 30 mg/kg) attenuates acetic acid-induced abdominal writhing, formalin-induced hind paw licking, the thermal reaction to the hotplate, and/or aversive response in the elevated plus-maze, open field, and light-dark box; and potentiates the effect of morphine and diazepam at sub-effective doses (1.25 and 0.25 mg/kg, respectively) without eliciting significant alterations in relative organ weight, or haematological or biochemical parameters. The in vivo blockade of P-3 l effects by naloxone (non-selective opioid receptor antagonist), naloxonazine (antagonist of specific subtypes mu1 of µ-OR), and nor-binaltorphimine (selective ĸ-OR antagonist) supports initial results from binding assays and the interpretations made possible from computational modeling of the interactions of P-3 l with the opioid receptor subtypes. In addition to the opioidergic mechanism, the blockade of the P-3 l effect by flumazenil suggests benzodiazepine binding site involvement in its biological activities. These results support P-3 l potentially possessing clinical utility and substantiate the need for additional pharmacological characterization.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Estructura Molecular , Analgésicos/farmacología
7.
Cell Biol Int ; 47(5): 990-1003, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36695414

RESUMEN

Several pollutants can alter neonatal prostatic development predisposing this gland to diseases. The toxicity and endocrine disrupting potential of aluminum has been reported in many organs, but little is known about its effects on the prostate. This study aimed to evaluate the effects that aluminum neonatal exposure can cause in the male ventral prostate and in the female prostate of adult and senile gerbils. Male and female pups were treated orally with aluminum chloride (10 mg/kg) from the 1st to the 14th day life. After treatment, the animals were aged until they reached 90 days or 1 year of life. The prostate glands were dissected out and submitted to morphological, immunohistochemical and ultrastructural analyses. Ventral prostates of adult males showed moderate hyperplasia and increased epithelial proliferation not associated with androgen receptor (AR) deregulation. On the other hand, senile males showed intense prostatic hyperplasia, and increased cell proliferation and epithelial AR regulation. Additionally, at both ages, there was a reduction in the prostate secretory function. The morphological changes observed in the female prostate were like those found in males. However, in adult females, prostatic hyperplasia was accompanied by a lower regulation of AR and estrogen receptor alpha, while in senile females, intense hyperplastic growth was associated with an increase in estrogen receptor alpha and a reduction in stromal AR. These results demonstrate that aluminum chloride neonatal exposure alters the hormonal regulation of the male and female prostate, inducing tissue damage that occurs in adulthood and intensifies during aging.


Asunto(s)
Hiperplasia Prostática , Animales , Humanos , Masculino , Femenino , Cloruro de Aluminio/toxicidad , Receptor alfa de Estrógeno , Gerbillinae , Aluminio , Envejecimiento , Receptores Androgénicos
8.
Life Sci ; 312: 121199, 2023 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-36402170

RESUMEN

AIMS: Oxidative stress, impaired antioxidant defense and neuroinflammation are often associated with the onset and progression of neuropsychiatric diseases. Conversely, several piperazine compounds presents beneficial neuropharmacological effects as well as antioxidant activity, and some derivatives combine both activities. LQFM212 (2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol) was synthesized to produce effects on CNS and to have an additional antioxidant effect. Previous preclinical tests have been shown anxiolytic- and antidepressant-like effects of LQFM212 in mice. Herein, the main objective was to verify the possible antioxidant potential and the effects of LQFM212 against behavioral changes, inflammatory and oxidative markers induced by lipopolysaccharide (LPS). MAIN METHODS: Initially, antioxidant potential of LQFM212 was evaluated by electrochemical assays. Afterwards, the effects of oral treatment with LQFM212 were evaluated in mice using LPS-induced models of systemic or local inflammation. KEY FINDINGS: In LPS-induced neuroinflammation, LQFM212 treatment reverted changes caused by LPS, demonstrated by attenuated anxiogenic- and depressive-like behaviors, reduced pro-inflammatory cytokines (TNF-α and IL-1ß) and increased anti-inflammatory cytokines (IL-4 and IL-10) on serum, and also improved oxidative stress-related changes (levels of nitrite, malondialdehyde, glutathione and carbonylated protein, and superoxide dismutase, catalase, myeloperoxidase and cholinesterase activities) on brain cortex and hippocampus. However, LQFM212 treatment did not attenuate the inflammatory changes in LPS-induced pleurisy model. SIGNIFICANCE: LQFM212 presents antioxidant activity and ameliorates behavioral, inflammatory and oxidative changes after LPS-induced neuroinflammation model. These effects do not seem to be secondary to a peripheral anti-inflammatory action of LQFM212, since this compound failed to attenuate the inflammatory changes in LPS-induced pleurisy model.


Asunto(s)
Lipopolisacáridos , Pleuresia , Ratones , Animales , Lipopolisacáridos/farmacología , Antioxidantes/farmacología , Antioxidantes/metabolismo , Enfermedades Neuroinflamatorias , Estrés Oxidativo , Citocinas/metabolismo
9.
Curr Res Food Sci ; 6: 100410, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36545514

RESUMEN

Beans reached the research spotlight as a source of bioactive compounds capable of modulating different functions. Recently, we reported antioxidant and oxidonitrergic effect of a low molecular weight peptide fraction (<3 kDa) from hardened bean (Phaseolus vulgaris) in vitro and ex vivo, which necessitate further in vivo assessments. This work aimed to evaluate the hypotensive effect and the involved physiological mechanisms of the hardened common bean peptide (Phaseolus vulgaris) in normotensive (Wistar) and hypertensive (SHR) animals. Bean flour was combined with a solution containing acetonitrile, water and formic acid (25: 24: 1). Protein extract (PV3) was fractioned (3 kDa membrane). We assessed PV3 effects on renal function and hemodynamics of wistar (WT-normotensive) and spontaneously hypertensive rats (SHR) and measured systemic arterial pressure and flow in aortic and renal beds. The potential endothelial and oxidonitrergic involvements were tested in isolated renal artery rings. As results, we found that PV3: I) decreased food consumption in SHR, increased water intake and urinary volume in WT, increased glomerular filtration rate in WT and SHR, caused natriuresis in SHR; II) caused NO- and endothelium-dependent vasorelaxation in renal artery rings; III) reduced arterial pressure and resistance in aortic and renal vascular beds; IV) caused antihypertensive effects in a dose-dependent manner. Current findings support PV3 as a source of bioactive peptides and raise the potential of composing nutraceutical formulations to treat renal and cardiovascular diseases.

10.
Toxicology ; 465: 153033, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34774662

RESUMEN

Chronic exposure to aluminium (Al) can contribute to the progression of several neurological and neurodegenerative diseases. Al is a metal that promotes oxidative damage leading to neuronal death in different brain regions with behavior, cognition, and memory deficits. Chrysin is a flavonoid found mainly in honey, passion fruit, and propolis with antioxidant, anti-inflammatory, and cytoprotective properties. In this study, we used an integrated approach of in vitro and in vivo studies to evaluate the antioxidant and neuroprotective effects of chrysin against the neurotoxicity elicited by aluminium chloride (AlCl3). In in vitro studies, chrysin (5 µM) showed the ability to counteract the early oxidative stress elicited by tert-butyl hydroperoxide, an oxidant that mimics the lipid peroxidation and Fenton reaction in presence of AlCl3 as well as the late necrotic death triggered by AlCl3 in neuronal SH-SY5Y cells. In vivo studies in a mouse model of neurotoxicity induced by chronic exposure to AlCl3 (100 mg/kg/day) for ninety days then corroborated the antioxidant and neuroprotective effect of chrysin (10, 30, and 100 mg/kg/day) using the oral route. In particular, chrysin reduced the cognitive impairment induced by AlCl3 as well as normalized the acetylcholinesterase and butyrylcholinesterase activities in the hippocampus. In parallel, chrysin counteracted the oxidative damage, in terms of lipid peroxidation, protein carbonylation, catalase, and superoxide dismutase impairment, in the brain cortex and hippocampus. Lastly, necrotic cells frequency in the same brain regions was also decreased by chrysin. These results highlight the ability of chrysin to prevent the neurotoxic effects associated with chronic exposure to Al and suggest its potential use as a food supplement for brain health.


Asunto(s)
Encéfalo/efectos de los fármacos , Flavonoides/farmacología , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Síndromes de Neurotoxicidad/prevención & control , Acetilcolinesterasa/metabolismo , Cloruro de Aluminio , Animales , Antiinflamatorios/farmacología , Antioxidantes/farmacología , Conducta Animal/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Butirilcolinesterasa/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Conducta Exploratoria/efectos de los fármacos , Proteínas Ligadas a GPI/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Locomoción/efectos de los fármacos , Masculino , Ratones , Necrosis , Neuronas/metabolismo , Neuronas/patología , Síndromes de Neurotoxicidad/etiología , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Estrés Oxidativo/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Células THP-1
11.
Clin Exp Pharmacol Physiol ; 48(12): 1693-1703, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34427931

RESUMEN

The proline-rich oligopeptide from Bothrops jararaca snake venom, Bj-PRO-7a, promotes acute effects in blood pressure in hypertensive animals. However, the cardiac effects of this heptapeptide are completely unknown. Thus, we sought to evaluate whether the Bj-PRO-7a could protect against cardiac remodelling in spontaneously hypertensive rats (SHR). SHR were treated with Bj-PRO-7a (71 nmol/kg/day, s.c.) or saline for 28 days. Wistar rats were used as control. Systolic blood pressure (SBP) and heart rate (HR) were measured by tail-cuff plethysmography. Cardiomyocyte diameter and interstitial and perivascular fibrosis of the left ventricle (LV) were evaluated using Picrosirius staining. Immunofluorescence was used to detect collagen I and III. Fibroblast proliferation was assessed by immunohistochemistry to detect proliferating cell nuclear antigen (PCNA). Protein expression was assessed by western blot. The superoxide dismutase and catalase activities and the concentration of lipid peroxidation products were evaluated in the LV. The SBP and HR were not different between treated and non-treated SHR at the end of the treatment. However, Bj-PRO-7a attenuated the cardiomyocyte hypertrophy, deposition of interstitial and perivascular fibrosis and collagen I, and positive PCNA-labelled fibroblasts. This peptide also reduced the increased levels of TBARS, expression and activity of catalase, and activity of SOD in LV from SHR. Also, the Bj-PRO-7a increased the expression of metalloproteinases-2 in SHR hearts. These findings demonstrate that the Bj-PRO-7a reduced the pathological cardiac remodelling in a pressure-independent manner in hypertensive rats through mechanisms mediated by oxidative stress regulation.


Asunto(s)
Prolina
12.
Behav Brain Res ; 401: 113066, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33333109

RESUMEN

Major depression disorder (MDD) is one of the most widespread and debilitating psychiatric diseases and may be associated with other mental disorders such as anxiety. Despite advances in neurobiology studies, currently no established mechanism can explain all facets of MDD, and available drugs often show therapeutic delay for clinical effectiveness and response rates in patients are around 50 %. Previous activities of piperazine derivatives on CNS are indicators of its therapeutic potential for treating mental disorders. In this regard, we have previously shown that the piperazine derivative 2,6-di-tert-butyl-4-((4-(2-hydroxyethyl)piperazin-1-yl)methyl)phenol (LQFM212) has anxiolytic-like activity which involves serotonergic pathway, nicotinic receptors and BZD-site of GABAA receptor, without cognitive impairments. Herein, was evaluated the potential antidepressant-like effect of LQFM212 on forced swimming test (FST) after a single dose of 54 µmol/kg and after repeated treatment for 15 days in mice. Pretreatment with WAY-100635, PCPA, prazosin, SCH-23390, sulpiride or AMPT reversed the antidepressant-like effect on FST, suggesting that monoaminergic pathway contributes for effects of LQFM212. Furthermore, repeated treatment with LQFM212 increased hippocampal BDNF levels dosed by ELISA kit. In assessment of possible adverse effects, repeated treatment with LQFM212 did not alter the body weight of the animals, glutathione levels in the liver, and serum levels of AST, ALT, urea, and creatinine. Taken together, the results showed that LQFM212 has an antidepressant-like effect that involves monoaminergic pathway and increased BDNF levels. This compound represents promising candidate for prototype of psychoactive drugs for treatment of anxiety and depression disorders since these pathological conditions may exist in comorbidities.


Asunto(s)
Antidepresivos/farmacología , Conducta Animal/efectos de los fármacos , Monoaminas Biogénicas , Factor Neurotrófico Derivado del Encéfalo/efectos de los fármacos , Depresión/tratamiento farmacológico , Neurotransmisores/farmacología , Piperazinas/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antidepresivos/administración & dosificación , Antidepresivos/efectos adversos , Monoaminas Biogénicas/agonistas , Monoaminas Biogénicas/antagonistas & inhibidores , Modelos Animales de Enfermedad , Masculino , Ratones , Neurotransmisores/administración & dosificación , Piperazinas/administración & dosificación , Piperazinas/efectos adversos
13.
Heliyon ; 6(5): e04015, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32509985

RESUMEN

Escitalopram (ESC), a selective serotonin reuptake inhibitor indicated for the treatment of depression and anxiety disorders, is primarily metabolized by cytochrome P450 (CYP) 2C19, which is a highly polymorphic enzyme known to cause inter-individual differences in pharmacokinetics. We hypothesized that CYP2C19 polymorphisms are associated with major depressive disorder (MDD) remission in patients treated with ESC in the long term. Thirty-one patients with MDD receiving chronic treatment with ESC monotherapy or combination therapy with other antidepressants (mirtazapine and bupropion), in naturalistic conditions, were included in the study. For comparison of genotype and phenotype frequencies, a group of 126 healthy subjects was also included. The CYP2C19∗2, CYP2C19∗3, and CYP2C19∗17 polymorphisms were analyzed by RFLP-PCR genotyping. The CYP2C19 genotypes and phenotypes were similar in patient and healthy subject groups. Four phenotypes were found in the healthy subject group: ultra-rapid (UM; 28%), extensive (EM; 52%), intermediate (IM; 17%), and poor metabolizers (PM; 3%). The patient group showed the UM (22.5%), EM (55%), and IM (22.5%) phenotypes. The UM patients had significantly higher ESC doses than both EM and IM patients (20.7 ± 4.5, 15.7 ± 3.8, and 14.0 ± 3.3 mg/day, respectively; p = 0.0041). Furthermore, all patients using ESC in combination with mirtazapine or bupropion antidepressants (ESC plus mirtazapine or bupropion) were UM metabolizers, suggesting that the ∗17 ultra-rapid allele seems to be the factor responsible for lower response to ESC, even at higher doses. The CYP2C19 UM phenotype is associated with higher ESC doses and antidepressant combinations for symptom remission in MDD patients.

14.
Exp Mol Pathol ; 116: 104486, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32585149

RESUMEN

Since the industrial revolution, all living beings have become susceptible to numerous sources of aluminum (Al) exposure. In addition to causing proven toxicity in many organs and systems, Al can also have estrogenic activity when absorbed by the body. The reproductive organs are commonly affected by environmental pollutants with estrogenic activity, but little is known about the effects of Al on the prostate and gonads. Therefore, the aim of this study was to evaluate the effects of subchronic Al exposure on the prostate and gonads of male and female adult gerbils. After 30 days of oral exposure to aluminum chloride (10 mg/kg/day), the animals were euthanized and the organs processed for cytochemical, ultrastructural, and biochemical assays. Ventral male prostates exposed to Al became hyperplastic and showed signs of cell aging. In addition, the male prostate showed decreased catalase (CAT) and superoxide dismutase (SOD) activity. The female prostate was structurally more affected than the ventral male prostate, since it presented hyperplasia and punctual foci of inflammation and prostatic intraepithelial neoplasia. However, CAT and SOD activities did not change in this gland. In the testis, Al promoted immature germ cell detachment and degeneration, as well as reduced CAT activity. In the ovaries, Al caused reduction in folliculogenesis and decreased SOD activity. Together, these results indicate that Al is toxic to the prostate and gonads of adult gerbils and that continuous exposure to this metal can impair the fertility of individuals of both sexes.


Asunto(s)
Aluminio/toxicidad , Senescencia Celular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Neoplasia Intraepitelial Prostática/metabolismo , Cloruro de Aluminio/farmacología , Cloruro de Aluminio/toxicidad , Animales , Catalasa/metabolismo , Senescencia Celular/genética , Femenino , Gerbillinae/metabolismo , Gónadas/efectos de los fármacos , Gónadas/metabolismo , Gónadas/patología , Masculino , Próstata/efectos de los fármacos , Próstata/metabolismo , Próstata/patología , Neoplasia Intraepitelial Prostática/inducido químicamente , Neoplasia Intraepitelial Prostática/patología , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/metabolismo , Testosterona/metabolismo
15.
J Trace Elem Med Biol ; 61: 126559, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32485499

RESUMEN

BACKGROUNG: Exposure to environmental pollutants in critical developmental windows may predispose the prostate to permanent changes in its homeostasis. Thus, it is essential to know the effects that environmental toxics, such as aluminum, can cause during the development of this gland. The aim of this study was to evaluate the effects of neonatal aluminum exposure on the ventral male prostate and the female prostate of 15 days old gerbils. METHODS: Male and female gerbils were exposed orally to 10 mg/kg/day of aluminum chloride from the 1st to the 14th postnatal day life. At 15 days of life, gerbils were euthanized and their prostates were collected for biometric, morphological, morphometric, immunohistochemical and three-dimensional reconstruction analyzes. RESULTS: Al exposure caused a reduction in body weight in males and a significant increase in serum testosterone levels in females. Prostate branching morphogenesis was intensified in males, who had greater length, number and area of prostatic epithelial buds. Additionally, Al altered the prostate hormonal regulation of males and females, causing up regulation of the androgen receptor and estrogen receptor alpha in the female prostate, and increased immunostaining of the androgen receptor in the ventral male prostate. These changes were associated with an increased rate of epithelial and stromal cell proliferation in both sexes. CONCLUSION: Together, these results indicate that Al altered the neonatal development of the prostate and that this metal acted as an endocrine disruptor in this gland.

16.
Neuropsychiatr Dis Treat ; 16: 427-432, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32103962

RESUMEN

INTRODUCTION: Clozapine (CLZ) is the gold standard drug for treatment-refractory schizophrenia (TRS). However, approximately 30% of patients partially respond to CLZ, defining this subset with super refractory schizophrenia (SRS). Alterations in enzyme activity may affect CLZ responses; the CYP3A4, CYP1A2 and CYP2C19 genes are primarily responsible for CLZ metabolism. OBJECTIVE: The aim of this study was to assess if CYP2C19 variants were associated with TRS or SRS. METHODS: CYP2C19*2 loss-of-function and CYP2C19*17 gain-of-function polymorphism genotype testing were performed in 108 individuals undergoing pharmacological treatment for TRS or SRS. DNA was extracted and polymorphisms were analyzed by polymerase chain reaction (PCR) and sequencing. RESULTS: CYP2C19*17 had positive correlations with SRS and lower Brief Psychiatric Rating Scale (BPRS) scores for TRS. In addition, CYP2C19*2 was associated with lower CLZ dosages for TRS. CONCLUSION: These results show that CYP2C19*2 and CYP2C19*17 polymorphisms influence CLZ responses during schizophrenia treatment.

17.
Reprod Toxicol ; 85: 83-92, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30822521

RESUMEN

This study evaluated the effects of BPS (40 µg/kg/day, during 28 consecutive days) on the male ventral prostate and female prostate of adult gerbils. For comparative purposes, gerbils were also exposed to BPA under the same experimental conditions. The prostates were submitted to biometric, morphometric, histopathological, immunohistochemical and ultrastructural analyses. The results demonstrated that exposure to both types of bisphenol caused no changes in testosterone or estradiol serum levels. Morphologically, the effects of BPS and BPA on female prostates were similar and included changes in prostatic tissue compartments, glandular hyperplasia, AR and ERα up-regulation and increased cell proliferation. In males, BPS and BPA promoted differential effects, since the prostate presented morphological changes and proliferative disorders that were more pronounced in the BPS group. Therefore, this study demonstrates that BPS caused endocrine disruption in the prostate of male and female gerbils.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Disruptores Endocrinos/toxicidad , Fenoles/toxicidad , Próstata/efectos de los fármacos , Sulfonas/toxicidad , Animales , Estradiol/sangre , Femenino , Gerbillinae , Masculino , Próstata/patología , Próstata/ultraestructura , Testosterona/sangre
18.
Rev. bras. farmacogn ; 28(6): 678-685, Nov.-Dec. 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-977754

RESUMEN

ABSTRACT Caryocar brasiliense Cambess., Caryocaraceae (pequi) is a typical Brazilian Cerrado tree. A previous study showed that the butanolic fraction of pequi leaves promotes endothelium-dependent relaxation mediated by nitric oxide and that it causes reversible hypotension in rats. In the present study, we investigated the cell signaling pathways associated with the butanolic fraction-induced nitric oxide release, and we characterized the chemical composition of its fraction. Vascular reactivity tests, a western blotting analysis, and a chemiluminescence assay were used to investigate the signaling pathways involved in the vasorelaxant effect of the butanolic fraction. Electrospray Ionization Fourier Transform Ion Cyclotron Resonance Mass Spectrometry was used to characterize the butanolic fraction chemical composition. Vasorelaxation was mediated through the activation of the calmodulin and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways, leading to subsequent endothelial nitric oxide synthase phosphorylation and nitric oxide production, as evidenced by western blotting and chemiluminescence assays, respectively. The chemical characterization of the butanolic fraction revealed the presence of 72 oxygenated compounds, whose molecular formulae are compatible with phenolic compounds, suggesting a potential contribution of these compounds for the butanolic fraction vasorelaxant effect. These findings show that the calmodulin and phosphatidylinositol 3-kinase (PI3K)/Akt signaling pathways are involved in the butanolic fraction-induced endothelial nitric oxide synthase activation and are promoted by polyphenol compounds present in the C. brasiliense leaves.

19.
Oxid Med Cell Longev ; 2018: 9842908, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30420910

RESUMEN

Pequi (Caryocar brasiliense) is an endemic species from Brazilian Cerrado, and their fruits are widely used in regional cuisine. In this work, a crude hydroalcoholic extract (CHE) of C. brasiliense leaves and its resulting fractions in hexane (HF), chloroform (CF), ethyl acetate (EAF), and butanol (BF) were investigated for their antioxidant properties and anticholinesterase activities. The antioxidant properties were evaluated by free radical scavenging and electroanalytical assays, which were further correlated with the total phenolic content and LC-MS results. The acetylcholinesterase and butyrylcholinesterase inhibitory activities were examined using Ellman's colorimetric method. The LC-MS analysis of EAF revealed the presence of gallic acid and quercetin. CHE and its fractions, EAF and BF, showed anticholinesterase and antioxidant activities, suggesting the association of both effects with the phenolic content. In addition, behavioral tests performed with CHE (10, 100, and 300 mg/kg) showed that it prevented mice memory impairment which resulted from aluminium intake. Moreover, CHE inhibited brain lipid peroxidation and acetyl and butyryl-cholinesterase activities and the extract's neuroprotective effect was reflected at the microscopic level. Therefore, the leaves of pequi are a potential source of phenolic antioxidants and can be potentially used in treatments of memory dysfunctions, such as those associated with neurodegenerative disorders.


Asunto(s)
Antioxidantes/farmacología , Inhibidores de la Colinesterasa/farmacología , Ericales/química , Fármacos Neuroprotectores/farmacología , Hojas de la Planta/química , Acetilcolinesterasa/metabolismo , Animales , Conducta Animal , Butirilcolinesterasa/metabolismo , Corteza Cerebral/patología , Electroquímica , Etanol/química , Ácido Gálico/análisis , Concentración 50 Inhibidora , Masculino , Malondialdehído/metabolismo , Ratones , Fenoles/análisis , Extractos Vegetales/farmacología , Quercetina/análisis , Estándares de Referencia , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo , Agua/química
20.
Oxid Med Cell Longev ; 2018: 3250908, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30327710

RESUMEN

Eugenia dysenterica ex DC Mart. (Myrtaceae), popularly known as "cagaita," is a Brazilian plant rich in polyphenols and other antioxidant compounds. Aiming to evaluate the potential use of cagaita in pathologies involving oxidative stress, such as neurodegenerative disorders, this study investigated its antioxidant potential and neuroprotective effect. Electrochemical approaches and aluminium-induced neurotoxicity were used to determine respectively in vitro and in vivo antioxidant properties of cagaita. Voltammetric experiments were carried out in a three-electrode system, whose working electrode consisted of glassy carbon. Male Swiss mice were administered with AlCl3 orally at a dose of 100 mg/kg/day and with cagaita leaf hydroalcoholic extract (CHE) at doses of 10, 100, and 300 mg/kg/day. The redox behavior of CHE presented similar features to that of quercetin, a widely known antioxidant standard. CHE prevented mouse memory impairment which resulted from aluminium intake. In addition, biochemical markers of oxidative stress (catalase, superoxide dismutase activity, and lipid peroxidation) were normalized by CHE treatment. The potential of CHE to prevent aluminium-induced neurotoxicity was reflected at the microscopic level, through the decrease of the number of eosinophilic necrosis phenotypes seen in treated groups. Moreover, the protective effect of CHE was similar to that of quercetin, which was taken as the standard. These findings showed that the CHE of cagaita leaves has a potential to protect the brain against oxidative-induced brain damage.


Asunto(s)
Antioxidantes/farmacología , Encéfalo/efectos de los fármacos , Eugenia , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Cloruro de Aluminio/toxicidad , Animales , Encéfalo/patología , Eugenia/química , Masculino , Ratones , Neuroprotección/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Hojas de la Planta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...